Long-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks

Authors

  • L. Ghods
  • M. Kalantar
Abstract:

Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy factors rather than weather conditions. This study focuses on economical data that seem to have influence on long-term electric load demand. The data used are: actual yearly, incremental growth rate from previous year, and blend (actual and incremental growth rate from previous years). As the results, the maximum demands for 2007 through 2011 are predicted and is shown to be elevated from 37138 MW to 45749 MW for Iran Global Grid. The annual average rate of load growth seen per five years until 2011 is about 5.35%

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Wind Energy Forecasting Using Radial Basis Function Neural Networks

Wind power forecast is essential for a wind farm developer for comprehensive assessment of wind potential at a particular site or topographical location. Wind energy potential at any given location is a non –linear function of mean average wind speed, vertical wind profile, energy pattern factor, peak wind speed, prevailing wind direction, lull hours, air density and a few other parameters. Win...

full text

Short-term and Medium-term Gas Demand Load Forecasting by Neural Networks

The ability of Artificial Neural Network (ANN) for estimating the natural gas demand load for the next day and month of the populated cities has shown to be a real  concern. As the most applicable network, the ANN with multi-layer back propagation perceptrons is used to approximate functions. Throughout the current work, the daily effective temperature is determined, and then the weather data w...

full text

Australia's long-term electricity demand forecasting using deep neural networks

Accurate prediction of long-term electricity demand has a significant role in demand side management and electricity network planning and operation. Demand over-estimation results in over-investment in network assets, driving up the electricity prices, while demand underestimation may lead to under-investment resulting in unreliable and insecure electricity. In this manuscript, we apply deep ne...

full text

Artificial neural networks as applied to long-term demand forecasting

This paper reports on the application of Artificial Neural Networks (ANN) to long-term load forecasting. The ANN model is used to forecast the energy requirements of an electric utility. It is then compared to time series models. The comparison reveals that the ANN produces results that are close to the actual data. The ANN model is then used to forecast the annual peak demand of a Middle Easte...

full text

Short-Term Electrical Peak Demand Forecasting in a Large Government Building Using Artificial Neural Networks

The power output capacity of a local electrical utility is dictated by its customers’ cumulative peak-demand electrical consumption. Most electrical utilities in the United States maintain peak-power generation capacity by charging for end-use peak electrical demand; thirty to seventy percent of an electric utility’s bill. To reduce peak demand, a real-time energy monitoring system was designed...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 3

pages  175- 182

publication date 2010-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023